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ABSTRACT
Let Wo(on) = {fsfe Cn-l[o,ll, f(n-l) absolutely continuous,
(n)
£f77 ¢ L [0,1]}. We consider the extremum problem

(k-1)

sup{ ™) + wt Vi)l e e w™, Nel_ <1, 14™) <oy,

where £ ¢ [0,1], 1<k<n-1, and \, p real, are all fixed.

We delineate a class P(o) of perfect splines of degree n, each
element of which attains the above supremum for some €, kK, A\ and 4,
as above, and such that for each ¢, k, A and u, as above, there

exists a P ¢ P(c) which achieves the above supremum.
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SOME EXTREMAL PROPERTIES OF PERFECT SPLINES AND THE
POINTWISE LANDAU PROBLEM ON THE FINITE INTERVAL

Allan Pinkus

§1. Introduction

Let W™ - w®o 1)< (£: ¢ ™ o,1], gn-1)

= absolutely
n)

o0
continuous, f( ¢ L [0,1]). In this paper we consider the
extremum problem

(k-1

) sup{h®e) + wi® Vo)l e e w™, el <, llf(“)ﬂ00 <o)

where ¢ ¢ [0,1], 1<k<n-1, and )\, p real, are all fixed, and (B ”w

0
denotes the usual L normon [O0,1].

We prove that in the discussion of (1.1), it is sufficient to consider
a specific class P(o) of perfect splines P(x) of degree n which
satisfy = an = ¢, and certain more restrictive
usty el =1 and M6 d certai tricti
requirements as stipulated in Theorem 5.1. We also consider, in more

detail a special case of (1.1), viz.,
(1.2) sup{ £ | e w™, el <1, 14D <o),

where ¢ ¢ [0,1], 1<k<n -1, fixed. The extremum problem (1.2)
may be regarded as a pointwise version of the Landau problem on the

finite interval given by

1.3) supU IR s e wi™, lell, <, 1€V, <00

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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(For a discussion of the Landau problem, see Schoenberg [17] and the
references therein.) By construction of numerical differentiation formulae,
we show that for each k, 1<k <n -1, fixed, every element of (o)
achieves the maximum in (1. 2) for at least one £ ¢ [0,1].

Our results may also be viewed as an extension of the pointwise
V. A. Markov inequalities for polynomials, to the appropriate Sobolev
space (cf. the work of Gusev in [ 20, p. 179-197]).

The organization of this paper runs as follows. Sections 2 and 3
are preliminary sections where we list some known but, unfortunately,
not sufficiently well-known properties of perfect splines and generalized
perfect splines. In Section 4, we show that in the consideration of the
extremum problem (1.1), it is sufficient to consider perfect splines with
at most a finite number of knots, the number depending on o, and
which exhibit certain equioscillation properties. In Section 5, we prove

the main result (Theorem 5.1). Section 6 is a discussion of exact

DR M S el

numerical differentiation formulae on [0,1], and relates to (l.2).
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§2. Preliminaries: Perfect Splines

In this section,we list several properties of perfect splines which
shall prove useful in the succeeding sections.

Definition 2.1. A perfect spline on [0,1] of degree n with r knots

(gi}::l’ 0< gl AL - gr <1, is any function P(x) of the form

n-1 :
(2.1) P(x) = L aixl + c[xn + 2

Vix - £)°
Py (-D'(x - )71

w D=

1

N—-

n

where, as usual, x+=xnuxz0. and zero otherwise.

It is, at times, more convenient to write P(x) in the equivalent

form
n-1 i r j gj+l 2l
(2.2) P(x) = ), ax +nc ), ' [ (x-t)at,
i=0 j=0 &
where go = 0, gm = 1.

If ¢ =0, then we say that P(x) is a perfect spline of degree n
with -1 knots.
In what follows, all perfect splines under consideration are of

degree n, and we thus delete all reference to the degree of the perfect
spline.

Proposition 2.1. Any non-trivial perfect spline with exactly r knots
has at most n +r 2zeros, counting multiplicity.

We count the multiplicity of a zero of a perfect spline in the

following manner:




1f Xg 18 not a knot of P(x), then we count multiplicity in the

usual manner, i.e., P(x) has a zero of multiplicity m at xo iff

P(i)(xo) =0,1=0,1,...,m~-1, and P(m)(xo) 0. If X, is a knot

of P(x), then P(x) has a zero of multiplicity m at X0 M <n-1,
g Pin) s tetl.. . el ond P(m)(xo) £0. If P(”(xo) g,
(n) )

0

i=0,1,...,n~-1, then since P (xo+)P(n (xo-) < 0, we say that

P(x) has a zero of m. (tiplicity n at Xy
The proof of Proposition 2.1 is a simple consequence of Rolle's

Theorem, see Cavaretta | 4] and Karlin [ 8].

The converse to Proposition 2.1 is contained in the following result.

n+r

Proposition 2.2. Given {xl}i=l’ 0O<x < - <x <1, with

L ML PGS B I AR -triv rfect spline
1 1+n

P(x), unigue up to multiplication by a constant, with exactly r knots
such that P(xt) =0,1i=1...,n+r. Furthermore, if {51};1 are

the knots of P(x), then

(2.3) x‘<gi<x“’n, T REEE I

(n) & e e
Remark 2.1. If fe W_ and xl-l<xi‘x1+l‘ -x1+m-l<xi+m’ m<n, then
by f(xj) =0 for j=i,...,i +m -1, we mean f“)(xi) =0,2=0,1,...,m~-1.

For a proof of Proposition 2.2, see Cavaretta [ 4] and Karlin [8].

(n) n+r+l
Theorem 2.1. If g« W_ ', and {xl}l=l re given, 0 <x < R s h
with x <x ., 1=1...,r+l then there exists a perfect spline P(x)
with, at most r knots such that P(xl) = q(xl), f=l,...,n¢0¢]
wifw

e A o 0 T s 8 S




(In case of equality among the xi, see Remark 2.1.) Furthermore, for

any perfect spline with at most r knots satisfying the above inter-

polating conditions,
(2.49) ™, < Ia™1 .

Theorem 2.1 gives one of the essential extremizing properties of perfect

splines. For a proof of the above theorem, see de Boor [1] and Karlin [8].

Theorem 2.2. Let P(x) be any perfect spline w'th at most r knots

*
and let {xi};‘:l”l be given, as above. Set o = llp(n)llw. Then

* o
for each o >0 there exist two unique perfect splines Pq(x) and

_Ea(x), each with exactly r + 1 knots, satisfying

| Ec(xi) = _Ec(xi) = P(xi), fel, ic.snrerd
2. IB™ 0, = 1p™1_ - o

3. Py =0, 2y = o

This theorem and applications thereof may be found in Micchelli and
Miranker [16], Gaffney and Powell [ 5], and de Boor [2]. The proof is essential-
ly due to Krein [13] and [14], see also Karlin and Studden [12, p. 263].

To fix our notation, the following definition shall hold throughout
this paper.

Definition 2.2. We say that a function fe C[0,1] has { points of

equioscillation if there exist {xi}il=l’ 0gx < -+ <x, <1, and € ¢ {-1,1}

such that f(xi)(-l)te = ||f||°°, & 3 AP

e i




Theorem 2.3. For each integer r > -1, there exists a perfect spline
P (x), unique up to multiplication by -1, with exactly r knots such

r

that ”Pr ”w =1, and Pr(x) equioscillates at n +r +1 pointsin [0,1].
For a proof of this theorem, see Tihomirov [19], Karlin [9], and

Cavaretta [4]. Note that P_ = Tn’ the Chebyshev polynomial of degree n,

0
and P_l = Tn-—l'
Let v, = [l Pl(rn) ”w. Then, from Karlin [9], we have
Proposition 2. 3. L e 0<00<crl< sanep . ATIel crrw as rt o,

Theorem 2.4. For o e (ar, Ur+1) there exists a perfect spline Z(x;o)
with exactly r +1 knots and n +r +1 points of equioscillation such

that “Z(';a)”00 =1, and "Z(n)(-;o)”w = o. Furthermore, if P(x)

is any perfect spline with the above properties, i.e., having at most r + 1
knots, at least n +r +1 points of equioscillation, and "P"m el

| p{n) I, =0, then P(x) = * Z(xic) or P(x) = * Z(I - x;0).
A proof of the above result and a thorough discussion of this class

of perfect splines is to be found in Karlin [9]. These perfect splines

Z(x;0) are called Zolotarev perfect splines and Z(xj;0) may be uniquely

determined by the normalization

e bt

i) Zl;0) =1

ii) Z(n)(l;d) o'F -, |

We define Z(x;o) for o = o, as Pr(x).
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§3. Preliminaries: Generalized Perfect Splines

Due to difficulties which arise in working with perfect splines, we
introduce a particular notion of a generalized perfect spline and record its

various properties. The use of generalized perfect splines has previously

appeared in various contexts, cf. Karlin [8], [9] and [10], and de Boor [1].

(n)

Rather than considering the Sobolev space W_'~,

i.e., functions

f(x) on [0,1]) of the form

%y i 1 } n-1
fix) = Z‘ a;x +m f (x-t)+ h(t)dt ,
i=0 0
(r) @
where h(t) = £ /(t) ¢ L [0,1], we define the functions
2
ke nle
1 2¢ i :
ui(x;s)=7£=;[m e ndn, 310, 1...;,a~1
(3.1) l - _{x; l2 ;
Sl € L 4Af=
K(x, t;€) = o Iw (n-1t), dn
for € >0, and consider the space
W(n)(’( ) = {f:Hx} = nz-‘l a,u (x;e) + " S, fl K(x, t;e)h(t)dt
0 g y . e el T U st :

where h ¢ Lw[O,l]} X
For ease of notation, we set (Nf)(x) = h(x), x ¢ [0,1]. For € =0,
this reduces to Nf(x) = f(n)(x). The advantages of dealing with w‘(:) (v c)
rather than W(:) will become obvious from this and the succeeding

section.

i T T 2 BRI . oo R A SR 5 0




It is important to note that ui(x;r,) - xl, f 20,0 .50 =),  and
K(x, t;ie) = (x - t)r:_l, as € 40, uniformlyon [0,1] (and [0,1]x[0,1]).

In general, when dealing with an extended complete Chebyshev

k
n—
system {ui(x)}i_:), one replaces the natural derivatives S by
i dx
B o B) where D, is a first order differential operator obtained

k | I
by a factorization of {ui(x)}?;t, cf. Karlin [ 7, Chap. 10]. However
ui(x;e) is a monic polynomial of degree i, and thus the natural

k

derivatives 1<k <n -1, are maintained in our case. We now

’
dxk
restate the results of Section 2 for generalized perfect splines. The
proofs of these results are either contained in the references of the

previous section or are variants of the proofs found therein.

Definition 3.1. We say that P(x;e) is a generalized perfect spline (G.P.S. )

3 r - . .. -
with r knots, if there exists {gi}hl, §g = 0<§ < <gris= grﬂ,
such that
n-1 r i gi+1
(3.2) P(x:e) = 2_, a.u(x;e) + ¢ 2_, (-1) f K(x, t;e)dt .
11
{=0 =0 &

As in Section 2, we have dropped all reference to the degree of

the G.P.S. For ease of notation, we shall also suppress the & through-

BT T ERNS o COR

out this and the next section in the case where no ambiguity arises.
Proposition 3.1. Any non-trivial G.P.S. with exactly r knots has at
most n +r zeros, counting multiplicity.

i
:
:

U i ‘
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: gt \n+
Proposition 3.2. Given {xi}i_;, 0 < - it Ko <1, then there

exists a non-trivial G. P. S. P(x), unique up to a multiplicative
constant,with exactly r knots such that P(xi) = A= o n

An important difference between perfect splines and generalized

perfect splines is that no restriction of the form xi <%, jr=g

{4n’ greeyl,

is made for generalized perfect splines.

£x }n+r+1

(n) :
Theorem 3.1. If f e W (Ye), and iYi=1 are given,

1 3 1, then there exists a unique G.P.S. P(x),

L <x <
! R T CTREERL

with at most r knots, such that P(xi) = f(xi), i=1,...,n+r+1l.

Furthermore, |[N(P) “aoj IN(£) "w

Note that uniqueness obtains here but not in Theorem 2.1.

It is important to note that we may replace some of the Hermite
data given in Theorem 3.1 by even block data. This fact is of crucial
importance in the next section. We shall make use of the following
variant of Theorem 3.1.

Theorem 3.1(a). If fe Wgon)(ye), and {xi}?:-l, ¢ and k are given,

Osx <ver2x =L 6€¢[0,1], I<k<n-1, then there exists a
unigue G.P.S. P(x) with at most r knots such that P(xi) = t’(xi),

i=1...,n+r-1, and PXg) = e, p%Deg) - €% D) Purther-

more, fIN(P) I < IIN(n) I .
The interpolatory conditions are meant as stated except when, for
in

<X

> < =
some i and some m >k, X X i+m’

o s
!
which case we demand that P“)(xi) = f( )(x’) for 1= 0,1 .c.,m+ 1.




Theorem 3.2. Let P(x) be any G.P.S. with at most r knots, and

x L
< er < <1 begiven. 8Set o = ”N(P)”oo'

n+r+l
X
let {x] - xn+r+1 =

Q<
T 1'i=1] i

' xl
*

Then for each o > o , there exist two unique G.P.S.'s Eg(x) and

gu(x), each with exactly r +1 knots, satisfying

Yo Pin) =B in)= P(xi), O PSR 1L S

2. N )l = INR )OI = o

3. N(Fo(l)) = o, N(B_(1) = -0 .

We state the foilowing extension of Theorem 3.2, similar to
Theorem 3.1(a).

Theorem 3.2(a). Let P(x) be any G.P.S. with at most r knots, and let

n+r-1
x0) 1

x '3
be given. Assume ||N(P) ”oo = ¢ . Then for each o > oa, there exist

,0<sx g 2sx 1<), £¢[0,1], and k,1<k<n-1,

two unique G.P.S.'s ;U(x) and gg(x), each with exactly r +1 knots,

satisfying

1. —l;a(xi) =P (x) = P(x), i=1...,n+r-1
2. ) = pUe) = Pe), 5 = k- 1,k
. IN@)ll, = N )l = o

4. N(P_ (1)) = o, NB_(1) = -0 .

Theorem 3.3. For each integer r >0, there exists a G.P.S. Pr(x),
unique up to mu ication by -1, with exa<tly r knots such that

-10-
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Theorem 3.4. For o e (rfr,O'

I Pr ”0(J =1, and Pr(x) equioscillates between 1 and -1 at exactly
n+r+l pointsin [0,1].

set o = IIN(®)I_.
Proposition 3.3 0, =0 g ®o, <s2»- < <... gnd o 19 as rte,

-1 0 1 r r
), there exist two G.P.S.'s Zi(x;a), i =] 2,

r+l
unique up to multiplication by -1, with exactly r +1 knots and

n +r points of equioscillation such that ”Zi(-;o) ”OO =1 and

- g iyn+r+l AP i
INZ (o)l = 0, 1=1,2. Let AR DL R
denote the points of equioscillation of Zi(x;cr), i =1,2. Then, Zl(x;cr)

and Zz(x;c) are differentiated by the fact that

1

(Le))(Z (< i 0) = o, while (NZZ(l;a))(ZZ(erHrH; i)

(NZ




§4. Perfect Splines are Sufficient

set. WMo o) = (0 0e W), llel <1, DNl <o),
We are interested in the problem

(4.1) sup le(k)(g) + pf(k—l

fe ng)(’(e:a)

Je)l

for some £ ¢ [0,1], 1<k<n-1, fixed, and \,p real numbers.

We first show that in the study of (4.1) it is sufficient to consider
generalized perfect splines with at most a finite number (this number is
dependent on o) of knots.

{0}
Theorem 4.1. If o [orr, 0”1), then for any fe W__ (’(e,o), there

exists a G.P.S. P(x) with at most r + 4 knots such that P ¢ W‘(:)(Xe;o),

and PUe) = e), 5=k -1,k
We shall not consider the case where ¢ = 0. In this and the

succeeding sections, if r = -1, then we understand o ¢ [a_l,uo) to

mean o ¢ (0-1’ ao).

In the proof of Theorem 4.1, we make use of the following simple

lemma.

Lemma 4.1. If P(x) is @ G.P.S. with r+4 knots, f¢ Wo(on)(ke), and there exist

and £ e [0,1] such that

IA

n+r+2
{xi} , 0

1:1 xls...<

S Xnira <!
1) P(xi) = f(xi), Feloia o ¥ d
2) M) = gy, 5= k- 1,k

and 3) NI, > IN@)T,

SRS D E Ry sy i

s
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hen P(x) - f(x) has no additional zerosin [0,1].

’, j Proof. If P(x) - f(x) has an additional zero, counting multiplicity,

then by Theorem 3.1(a), "N(P) ”Qo < |IN(f) ”00. But this contradicts (3).

The lemma is proven.
n+r+3
Proof of Theorem 4.1. Let 2 = {f = (L ";n+r+3) 10,20, 12:‘1 g = 1}.
i —
= [ = \‘ i = =
Let xo(é.) = 0, Xi(s) jé;l éi' I= L. ontrtd (xn+r+3(9 = 1), and

assume f € W(n)

pl (Ve;o). From Theorem 3.1(a), there exists, for each { ¢ Z,

a unique G.P.S. ;’(x;_g) with at most r + 3 knots such that

1) P(x(&)k) = £(x(8), i=1,...,n+r+2.

2) PWesn = D), 5= k- 1,k
and furthermore, "N('l;(- ;Q)"m < “N(f) "w <o. Choose & >0, sufficiently
From Theorem 3.2(a), there exists a

r+l’
unique G.P.S. Pé(x;g) with exactly r + 4 knots satisfying 1), 2), and

i small, such that o + 6 <g¢

3) N (o)l =0 +8, and N(P(LiL) = o + 6.

Define
mi(5)= max iPé(x;L,)l, 10 ITOPRE L TN
x (L) <x<x.(L)
i-1 i
M) = max m(Q) = P (0l

1 2),.,.,n¥r+3
and Ri(g) = M(L) - mi(Q, i=1,...,n+r + 3. Note that Ri(g) is a
continuous function of [ ¢ Z.

%
It is our aim to prove the existence of a § ¢ Z for which

s
"PE,(' & )”w < 1. The proof of this fact is divided into three cases.




& 1%
ifé’

& n+r+3 + g,

Casel. Thereexistsa & ¢ Z suchthat ), R( ) =0, and

SREEY S

“f i=1

ks
Qi =0 ‘forgoms 1 =1 ...;0+T+ 3.

n+r+3
1 % * %k %
Since 2_, Ri(g):o, M(g)=m1(5) forall {=1,...,n+r+3,
i=1 %
% * -
Now, for some io, Li = 0, implying m, = IP x (‘L,_ it )l = W
0
%
lfx, (& D] <1 Thus llg(- s)ll s) e | ) ><1. :
0 0 b
3 ntr+3
Case 2. There exists a L ¢ Z such that Z Ri(g ) =0, and 3
i=1
* ]
g,>0,i:l,...n+r+3. 5
i
* * %
Since M( ”P ke )Ilw, if M(% ) <1, then we are finished. 3
* * * 4
Assume M(L ) = ¢ > 1. Then in each interval (xi__l(_lL | R xi(L_ )), there ©

*
exists apoint z, i =1,...,n+r + 3, suchthat |P6(zi;£ )l S

17

* *
b From Lemma 4.1, since "f”uogl, it follows that Pé(zi;g )Pb(z if 1 <0,

i+l
3%
| i =) o n Pk TS Pb(x;g ) equioscillates at n +r + 3 points

|

between ¢ and =~-c. From Theorem 3.3, there exists the G.P.S. Pr+1(x)

with r+1 knots and n +r + 2 points of equioscillation between | and -I.
*
Since ¢ >1, Pb(x;g ) -P”l(x) has at least n +r + 2 sign changes in

[0,1]. As a result of Theorem 3.1, 5 Inp +ll°°" "NP (-8 )Il = o ¢+ 8.

But this is a contradiction. Thus c¢ <1.

) n+r+3

Case 3. Forall Le¢ 2, ), R(&)>0.
i=1
Consider the mapping

R(L) PRy

i 7 nir+3 ’
S R
je1.

-14-

|
! Since Rt( ) 1is a continuous function of § ¢ Z, there exists, by the
|
i

) -~
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s
Brouwer fixed-point theorem, a § ¢ 2 such that

*
o )
(4.2) Li=m}T—-—:‘, o SURTSE. I T R
Rj(£ )
i=1
* *
Since M(L ) = max mi(g ), there exists an iy such that

* xt
R (L) =0 Mt)=m (£). From (4.2), ¢ =0 and thus
Yo o o

Ip, (s &, = ME") = m (&) = [P(x, (&80
0 0

lix, @D <1
0

Thus, for each o ¢ [0 ,0 ), fe Wg‘)(ye;cr) and & >0, small,

' r+l
there exists a G.P. S. Pé(x) with exactly r + 4 knots such that
P(g)(g) = f(j)(g), j=k-1Lk, Pl <1, and IINP6||°° =0 +6. Let
6 1 0. Since the class of G.P.S.'s with at most r + 4 knots in
Wg‘)(ye;a + 6) is closed and compact, it follows that there exists a
G.P.S. P(x) with at most r + 4 knots such that "P"mS_l, "NP"«) = 7,
and Pm(g) = f‘”(g), j = k = 1,k. The theorem is proven.
Remark 4.1. By a more careful analysis, it is possible to prove that we
can, in fact, reduce the admissible class of generalized perfect splines

to those with at most r + 3 knots.

Remark 4.2. If fe Wg’)(}(e;c), then we may perturb f(x) by any
n-1

g(x) = 12-:0 aiut(x;e) so as to increase "f"w while keeping "Nf"w

unchanged. It therefore follows that f ¢ W(:)(y(e;c) which solves (4.1)

must satisfy ”f"w =1,
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Proposition 4.1. The supremum in (4.1) is attained.

Proof. This follows by a standard compactness argument which is obviated

by Theorem 4.1.

Definition 4.1. Let P(x) be a G.P.S. with exactly ! knots and

+1-
exactly n + f -1 points of equioscillation {xi}?zl 1.
< ..o s . i
0 < X < < xn+l-1 <1. We say that P(x) has opposite orientation if
P(x,,,)/NP(1) <0. (Ihis is equivalent to P(x)NP(0)(-1)" <0.)

Let Pe(a) denote the class of generalized perfect splines in
Wg‘)()(e;u) which maximize (4.1) for some ¢, k, A\, and p as prescribed.
The following theorem uses a perturbation technique which is a

variant of that used in Karlin [ 10, p. 470-472].

Theorem 4.2. For every P e Pe(cr), we have ”P”w =1 and "NPum = 0. More-

over, if Pe Pe(o) has ¢ knots, then P has atleast n+ £ -]
points of equioscillation, and if P has exactly n + £ -1 points of

equioscillation, then P has opposite orientation.

Proof. If P ¢ Pe(cr), then "P"w = 1 by Remark 4.2. Assume that P(x)

m

has ! knots and m points of equioscillation (xi}1=l’

0 < & o <
___xl xm_l,

where, without loss of generality, we assume P(xi) = (-l)“m, L L. m.

Choose A (xi ), i=1,...,m =1, such that, in [yt’ytﬂl’

4 x1+1

}"(x)(—l)Hm <l, i=0,1,...,m -1, where Yo * o, o 1.




The idea of the proof is to construct, where the conditions of the
theorem are not met, a G.P. 8 Q&(x) with at most ! Kknots for which
Q(()j)(g) = p¢), j = k- Lk, and such that lo I, <1, INQll, <o.

This would, by Remark 4.2, contradict the maximizing property of P(x).

Note that while we have restricted our attention o [0,1], the
generalized perfect splines are themselves well-defined for any x on
the real line with the retention of the appropriate results of Section 3.

We construct Qé(x) as follows: O{)(x) is the G.P.S. which satisfies

1) Qqly) = Ply), i=1...,m-1

2) Qo) = Bg), 5 = k- 1k

3) Qé(xm) = P(xm) -6=1-6, for 6>0, small.

Casel. NP(l) >0 and m<n+ ¢ -1.
4) Since n+f-m-12>0, choose n+{-m-~-1 points in

(<1,0) andlet Q,(x) interpolate P(x) at these points.

X
We have imposed exactly n + £ +1 conditions upon Qa(x).

Thus Q&(x) is uniquely defined with at most ! knots satisfying 1) - 4).

Since P(x) and Qé(x) both have at most £ knots, but are not identical by

condition 3), it follows from Theorem 3.1(a) that P(x) - Q6(x) has no addi-

tional zeros in (=% ,®). Also, Qa(x) is a continuous function of & and,




as 610, Qﬁ(x) -« P(x) uniformly on [0,1]. Therefore
HQA “m < ”Pum =1, and NQé(l) - NP(1) >0 for 6 >0, small. By
assumption, NP(l) >0, and by construction Qb(x) < P(x) forall x>1.
Thus NP(1) > NQ,(1) >0, implying o > lINPll o > INQIl .
Case 2. NP(1) <0 and m<n+1 - 2.

Conditions 1) - 3) of Case |1 specify m + 2 constraints on Qb(x). To
construct Qs(x) as in Case 1, we must specify n + £ +1 conditions.
Thus we have n + £ - m -1 remaining '"degrees of freedom'. Since
n+f-m-1>0, we set 06(2) = P(2). The remaining n+ £ -m - 2
conditions, if any, are specified as in condition 4) of Case 1. As above,
Qé(x) - P(x) as 610, and nQ6||°o - - "PHQc =1 for & >0, small,
since P(x) - Qe(x) has no additional zeros in (-%,®). Since P(2) = Qb(z),
Qé(x) > P(x) for x > 2. Recall that NP(l) <0, and
NQé(l) - NP(1) >0 for & sufficiently small. The analysis
now follows that of Case 1.

It remains to prove that for P ¢ Pe(c), "NPuw = ¢. This fact
may be proven via the analysis of Case 1 or 2. We do not enter into
the details. The theorem is proven.

We now wish to return to a consideration of ordinary perfect splines,
i.e., to the study of

(4. 3) max  In®e) + wf® Vgl
fe W‘(:)(c)




for some &, k, p and X\ as stipulated earlier, where
wWio) = (grew™ el <, 1€ <o)

If P(x;e), for each & >0, 1is a generalized perfect spline
(see (3.1)) such that “P(';e)“‘Jo = ], "NP(';E)"w = ¢, and P(x;e)
has £ knots and m >0 points of equioscillation then as € | 0,
by an appropriate choice of subsequences, we obtain in the limit an
ordinary perfect spline P(x) for which ”P“O0 s ¥ “ P(n) “oo = ¢, and
P(x) has at most ! knots and at least m points of equioscillation.
(For a more detailed proof of the limiting behaviour, see Karlin [ 8], [9].
Suffice it to say that since the convergence is uniformon [0,1], we
cannot lose points of equioscillation, nor can we gain knots. )

Theorems 4.1 and 4. 2 lead to the following two results.
Theorem 4.3. If o ¢ [ur,arﬂ), then for each f ¢ Wf:)(c), there exists
a perfect spline P e ng)(a) with at most r + 4 knots and such that
1™, = o, PWe) = ), 5 = k- 1,k

Theorem 4.4 . It is sufficient in the study of (4.3) to consider perfect

splines P(x) for which lIPll_ =1, Ip(™) I = o and which further

satisfy the conditions that if P(x) has ¢ knots, then P(x) has at
least n+ f -1 points of equioscillation, and if P(x) has exactly

n+ £ -1 points of equiosciliation, then P(x) has opposite orientation,

y WA R VN E R 1

ie., PMRx , ) <0 where (x)™!7 0<x S

i"i=1
are _the points of equioscillation of P(x) on [0,1].

Remark 4.3. We do not claim that every function f ¢ w‘:)(a) maximizing

(4.3) for some £, k, A and p is necessarily a perfect spline.




§5. The Main Theorem

We define, for each o ¢ (0,%), a class of perfect splines P(o)
such that any P ¢ P(o) satisfies “P“m =1 and “P(n) “w = o, and
for which

A) if o = o, 120, then for any P ¢ P(¢), either

) Plx) = Pr(x), or
2) P(x) has r +1 knots, n +r points of equioscillation,
and opposite orientation.

(Recall that Pr(x) is the pefect spline, unique up to multiplication
by -1, with r knots and n +r +1 points of equioscillation which
satisties [1#ll, =1, B = o)

B) if o ¢ (or,arﬂ), r > -1, then for any P ¢ P(¢), one of the
following holds:

1) P(x) is a Zolotarev perfect spline 2Z(x;o)

2) P(x) has r+1 knots, n +r points of equioscillation, and
opposite orientation

3) P(x) has r+2 knots, n+r +1 points of equioscillation,

and opposite orientation.

On the basis of Theorems 4.3 and 4.4, we shall prove the following

result.
Theorem 5.1. If o >0, en i
(5.1) max - %) +uf*Dig)l

fe M‘:)(c)
for £€¢[0,1], 1<k<n~-1, \, p real, all fixed, it is sufficient to
consider the class of perfect splines @(o).
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The proof of Theorem 5.1 readily follows from the following proposition.

Proposition 5.1. If P(x) is a perfect spline satisfying ”P”00 =], with

exactly r+ 1 knots, n +r points of equioscillation, and opposite

orientation, then

(n)
“r-1 b "P ”00 o %rtl

An important tool in the proof of Proposition 5.1 and in the subsequent
section is a simple version of the Budan-Fourier Theorem for splines.
For the statement of the theorem, we need the following definitions.

Definition 5.1. Let x = (xl, o .,xl) be a real vector of £ components.

Then

i) S (x) denotes the number of actual sign changes in the

sequence X,...,Xx, with zero terms omitted.
sedquence X, ¢ With zero terms omitied

+
ii) 8 (x) counts the maximum number of sign changes in the

sequence Xy oo X, where zero terms are assigned values
+1 and -1, arbitrarily.
For example,
87(<1,0,1,<1,0,~1) = 2, §'(-1,0,1,-1,0,~1) = ¢,

Definition 5.2. If fe¢ C[a,b], f(x) #0 in any subinterval (c,d), of

[a,b], then Ef(a, b) counts the number of zeros of f(x) in (a,b)

with the convention that if f(x) = 0, but f does not change sign at x,

then the zero of f at x is counted twice.

Definition 5. 3. A step function g¢(x) gn (a,b) with a finite number of jumps

be w in fi

£ b 3T




I}
w5 U gy =
g(x) = 190 ai(x §i)+, where £, = a < §1 < <§,<b.

For such a function, we define

0
S(a,b)(g) =8 (a3, +a,.--, 12:40 a)

i.e., S(—a, b)(g) counts the number of strict sign changes of g(x) on (a,b).
On the basis of the above definitions, we may now state a version

of the Budan-Fourier Theorem for splines.

Theorem 5.2. (de Boor and Schoenberg [ 3], Melkman [15]). If s(x)

is a polynomial spline function of exact degree n on [a,b] (i.e.,

s(n)(x) # 0 for some x ¢ (a,b)), with finitely many (active) knots in

(a,b), all simple, and if s(x) # 0 on any subinterval of (a,b), then,

Z(a,0) <57, (™) + 87(s(a), s'a), -, M2

- 5"(s(b), s'(b), - -, s™p-) .
The following lemma is used in the proof of Proposition 5.1
and in Section 6.
Lemma 5.1. Assume P(x) is a perfect spline with r +1 knots
{ni};ﬂ, O< < ichy o€ l, n+r points of equioscillation {xi}?::,
0< X LA AT X or <1, and opposite orientation. Then

(5.2) X < <X op s eeameed S SN

g
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Proof. P'(x) vanishes at x X . Furthermore, if x, > 0, then

b i 1

P'(xl) = 0, while if X = 0, then since P(x) has opposite orientation,

there exists a Y < 0 such that P'(yl) = 0. Similarly, if e /i

1 = : : G -
Pf(x_ ,) =0, while if X, =1 thereexistsa y >1 such that

F'(ymr) = 0. From Proposition 2.2 applied to the perfect spline P'(x)

of degree n -1, and since 0 < M eyl <1, it follows that

X, <n <X, T DR )

i+n-1’

Proof of Proposition 5.1. The proof is divided into four cases.

(n) 3 (n)
Casel. Assume |IP ”w—c<cr_ IIPHIIOO

Both P(x) and P S5, (x) exhibit n +r points of equioscillation on

n+r n+r
(0,1]. Let {x;};_; and {y}; 1, 0<x < <X Sk
0 = Y| e SR ™ 1, denote the points of equioscillation of P(x) and

P _l(x) on [0,1], respectively. Assume, without loss of generality, that

P(Xi) - Pr-l(yi)’ f=1,...,n+r. Since ¢ < o P(x) - x) cannot

vanish identically on any subinterval of [0,1], and therefore P(x) - Pr-l(x)

has at least n+r zeroson [0,1]. Thus P(n)(x) - (n)(x) has at least

r sign changes on [0,1]. But Pr-l(x) has r-1 knots and o > 0.

r-1
(n)

Therefore P' '(x) - P?_‘;(x) has at most r -1 sign changes on [0,1],

a contradiction.

Case 2. Asswme IB™ I, =050 = 16, .

r+l oo
Choose & >0, sufficiently small, such that (1 - €)o > o

(n)

4’ Thus

(1-¢)P (%)% P( )(x) has exactly r +1 sign changes on [0,1], whose

orientation is totally determined by P( )(x). Since Pr+l(x) has n+r+2

-23~
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Case 3. Assume "P(n)“ =0 = |lp
e w0 r-

points of equioscillation and ”(l - t:)P”00 = ]l=-g« ”Pr+l ”w,

(x) has at least n+r+1 sign changes in (0,1), and thus

h
1\

(1 -¢e)P(x) % Pr+1

(1- s)P(n)(x) + Pf_l: x) has at least r +1 sign changes on (0,1). By the

(n)

previous remarks, (1 - g)P' '(x) % Pf_rg(x) has exactly r +1 sign changes.

However, the orientation of the sign changes in this second method is

determined by =+ Pr+ (x). A contradiction.

1

1 r-1 o’

Since we must consider the possibility of P(x) - Pr—l(x) vanishing

on some subinterval of [0,1], the analysis is slightly more complicated

r+l
f=1!
n+r :
{xi}i=l’ 0 < x < <x . <1l denote the knots and points of equi-
r-1

T3 g

than that of Cases |l and 2. Let {qi} 0€m < - <1, and

£
nr+1

oscillation of P(x), respectively, and let {gi} Bef <c--xg <),

r-1

n+r -
= < < o0 L =
and {yi}izl § 0 Yl Y, Yn+r 1 denote the knots and points

of equioscillation of Pr-l(x)’ respectively. Since P;_l(yi) = 0,

i=2,...,n+r -1, it follows from Proposition 2.2 that Yi4 < &1 S Yig!

.. )

I Pr-l n+r

i=1,...,r-1. Assume, without loss of generality, that P(xn+r

Since P(x) has opposite orientation, Pﬁ'_‘i(O)P(")(o) <0 and
Pﬁ?;(l)P(n)(l) < 0, and therefore P(x) - Pr-l(x) cannot vanish identically
on [0,e] oron [l-¢,1] for € >0, small. We wish to prove that

P(x) - Pr-l(x) never vanishes identically on any subinterval of [0,1].

Assume the converse. .
Subcase 3.1. There existsa & suchthat P(x) - P_,(x) does not
vanish identically on any subinterval of [0,§,], but P(x) - P_ (x)=0
on (£,6 +e), e>0, small.




Since Y < E’i’ P(x) - Pr— (x) has at least i zeros in [0, gi),

|

and thus at least i -1 in (o,gi). (We are counting zeros as in the

definition of 2.) Furthermore, S(—O ¢ )(Pm) - P(rr_];) <i-} .and
e
i
t 1
P( )(gi) - Pi__)(gi) =0, 2 =0,1,...,n~-1. We now apply Theorem 5.2

to obtain a contradiction.

Subcase 3.2. There exists an n such that P(x) - Pr—l(x) does not
vanish identically on any subinterval of [0, n }, . but  P(x) - Pr_l(x) £0
on (ni,ni+e),e>0, small, and qi¢§j,j:1,...,r-l.

Thus gj<ni<§j+l for some j =0,1,...,r -1, where &,0:0,

boad D ot s, e R i’_‘i

r (x) - P

(x) has no sign change

on (0, ni). However, ¥ " 0 < X, < n < n (see (5.2)). Thus P(x) - Pr-

()
has at least one zero in [0, qi). A contradiction immediately follows

from Theorem 5.2. Thus éj < n <E forsome j=1,...,r-1, and

i+l
. - (n)
>k Nowy. .8 P -
O : (0’ T]l)(
from (5.2), P(x)-P

P(n)) <min{j,i -1}, and since x, <7
r-1 i i
r-l(x) has at least i -1 zerosin [0, qi), and at
least i-2 in (O, ni)' An application of Theorem 5.2 now yields
i-1<min{j,i -1}. Therefore j>i-1, and ¥ gi_l < gj < n;. However,

since Y X <y P(x) - Pr—l(x) has at least i zeros in [0, ni) (and

i
i-1 zerosin (O, ni)). A contradiction ensues.
Since P(x) - Pr—l(x) cannot vanish identically in any subinterval

of [0,1], and P(x) and Pr-l(x) both equioscillate at n +r points

W with the same orientation, (i.e., P(xi) = Pr-l(yi)’ {=1,...,0+r1),

the analysis of Case | is applicable. Case 3 is proven.




(n) il

Case 4. Assume "P(n) "w e 5T llp

r+l o’
(n)

(x) so that P(n)(l) = (1). Since P(x) and

Orient P(x) and PH e

1
- (n) _ (n)

Pr“(x) both have r +1 knots, S(O,l)(P Pr+1) < r. Furthermore,

Pr+l(” # P(1), and Pr+l(o) # P(0) due to the opposite orientation of P(x).

Thus P(x) - Prﬂ(x) cannct vanish identically in [0,e] or [1-¢g,l],

for € >0, small. If P(x) - P”l(x) does not vanish identically on any

subinterval of [0,1], then since Prﬂ(x) has n +r + 2 points of equioscil-

lation, P(x) - Pr”(x) has at least n+r+l zeroson [0,1}, hence on (0, 1),
and application of Theorem 5.2 immediately leads to a contradiction. As
above, we prove that the hypothesis that P(x) - Prﬂ(x) vanishes on some

subinterval of [0,1] is untenable.

We assume, as previously, that {qi };tll and {xi}?f; are the
knots and points of equioscillation of P(x), respectively. Let {éi}:fll
+r+
and {yi}?=I " denote the ordered set of knots and points of equioscillation,

respectively, of Pr+l(x)'
Subcase 4.1. There exists a 61 such that P(x) - Pr“(x) does not
vanish identically on any subinterval of [0, §t], but P(x) - Prﬂ(x) =0
on (£,€ +e), e>0, small.

A contradiction follows as in Subcase 3. 1.

Subcase 4.2. There exists an n such that P(x) - Pr+l(x) does not

vanish identically on any subinterval of (o, “i]’ but P(x) - P”_l(x) =0
9_1'1("!1,'11*3),3)0; M ')1*51;1=1o--',"+l-

SRR i

S R
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Thus gJ <m < gm for some j =0,1,...,r +1, where go =0,
: . 2 : (n) oy _ o(n)
Ean 1. I =0, then 0< m, < gl, and since P '(0) = Pr+l(o)’
it is necessary that i > 2 (i be even) in order that P{x) - Pr+1(x) =0

on (q,l, n + €e). However, 0 < x < x_ < n, < implying that

1 2
P(x) - F_ (x) has at least one zero in [0,n,), while S (P(n) —P(n)) =0.
i+l 38, (0, r]i) r+l
A contradiction follows from Theorem 5.2. For j >0, % (P(n) - P(n)) <
(0, n,) r+l
min{j,i - 1], unless j =i -1, in which case the boundis j-1=1i- 2.

Since X, <mn and yj+l < gj <y, P(x) - Pr+l(x) has at least max{j,i - 1}
zeros in [0, qi). An application of Theorem 5.2 implies j =i -1. A
contradiction now follows from the above remarks.

The proposition is proven.

Proof of Theorem 5.1. On the basis of Theorems 4.3 and 4.4, it is sufficient
to consider perfect splines with a finite number of knots, which are of

norm 1, and where n't'n derivative is of norm o. Certainly 2Z(x;o),

the Zolotarev perfect spline, satisfies the condition of Theorem 4. 4 (if
" then Z(x;cr) = Pr(x)). If P(x) is any perfect spline with

! knots and at least n + £ points of equioscillation, then P(x) = Z(x;Y)
for some y. However "Z(n)(x;y) Hw =y, so thatif P(x) # Z(x;0), P(x)
has f knots, n +f -1 points of equioscillation, and opposite
orientation. From Proposition 5.1, L < ﬂP(n) Ilw e, The theorem

now follows. Q.E.D.

w27
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S6. Numerical Differentiation Formulae

In Section 5, we proved that in the study of

(6.1) max le‘k)(g) + pf“"”(g)l 3
fe Wion)(o)

where 1<k<n-1, £ [0,1], and X\, u, real, all fixed, it is sufficient
to restrict ourselves to a consideration of the class of perfect
splines P(o).

In this section, we study in greater detail a special case of (6.1),
namely,

(6. 2) max |£5)g)|
fe W(:)(o)

where 1 <k<n-1 and £ ¢ [0,1], fixed.

From this study it will follow that for each k, 1<k <n -1, andeach
P ¢ P(0), there exists at least one point £ € [0,1] such that P
maximizes (6. 2).

A numerical differentiation formula is any equation of the form

. (k) e
(6.3) £7(8) = ), afly) + [ KOF (1)t
i=1 0

which is valid for all f ¢ W(:) . Given the formula (6. 3), it then follows
that

1
(6.4) eyl < el 3, Tal + IER T f Ikl
i 0 ;

Given P¢P(c) and k 1<k<n-1, we shall find ¢« [0,1], (a )P,




and K(t) satisfying (6.3) for which equality holds for P in (6.4),
implying that P maximizes (6.2) for k and £, as above. (For
a discussion of numerical differentiation formulae on [0,1], see

Kallioniemi [ 6].)

Proposition 6.1. Let P(x) be a perfect spline with r +1 knots,

r+l F
{ni }i=l’ 0 < R & 1, exactly n +r points of equioscillation
n+r .
{xi}i=l’ 0<x < <xn+r51, d site orient " ther
xis -trivi i s(x), unique up to multiplication by a constant,
of degre¢ n -1 with the r+1 knots {qi}:tll which vanishes at
. R
th. {xi}1=l’ i'e'i

r+l
s(x) = LbX+LC(x—qi+ .
and s(xi)=0, izl .o;mnde, 8x) 0.

s(”(x) is not identically zero on any subinterval
(.5) gf 104}, t =B ). =]

Furthermore,

Proof. From (5.2) we have x, < n < X i=1...,r +1. These are

i i+n-1’

explicitly the conditions (see Schoenberg and Whitney [18]) necessary

to insure the existence of the non-trivial s(x) as in the statement of

the proposition, uniquely determined up to a multiplicative constant,

and such that s{x) = 0 iff x = X, 1= l,...,n +r. Thus, s(x) changes

sign at the {xi}?f;, and also, s(n-l)(x) #20 on [0,1]. From

Theorem 5. 2,

-29-




(s™Y) 4 57(s(0), . ..., s (0), s o))

- 8*(s(), ..., s™ 3, ™))

<r+l+n-l=n+r.

Therefore equality holds throughout, implying that s(x) is a polynomial

of exact degree n -1 in each interval (ni-l’ “1)’ i=1...,r+2, where

1
"o = 0, 7 1, and hence s( )(x) does not vanish identically on

any subinterval (a,b) of [0,1], Q.E.D.

£=0,1,...,n-1.

By Proposition 6.1, s(k)(x) has exactly n +r - k simple zeros

and vanishes nowhere elseon [0,1],k =1,...,n -2, while s(n_l)(x)
r+l

has r +1 sign changes at {n, )} Let (¢) denote the matrix
P il

E 1 4% 1 0
xl i xn‘._r 0
k-1 k-1
xl A b 0
k k
xl xn+r k!
k+l k+l (k+1)!
3 SA “n+4r 7. *
xn-l R xn-l (n-1)! en-l—k
1 n+r (n=-1-k)!
U e (n-1! n-l-k
(X =)y (% Wy (n-1-01 (&~ M)y
A n-1 e n-1 (n-1)! n-l k
L(xl nr+l)+ 5 (xn+r 1"r+1)<l> (n=1-k)! (€ - "r+l
.
-30-
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Ej?z"rx‘ "

Since

s®)e))

(bo, hids bn-l’ Cy - 'Cr+l) Lk(g) = (s(xl), ik s(xn+r),
= (0,...,0,s® )¢y ,
it follows that det Lk(g) = 0 at the points £ for which s(k)(g) = 0,
Thus, for k = 1,2,...,n - 2, there exist at least n +r - k points
{ggk)};’f{'k for which det Lk(g(ik)) =0,1i=1...,n+r-k. (It may,
in fact, be shown that Lk(g) changes sign at {§§k)}?:-k and
vanishes nowhere else in [0,1].)

Since any f ¢ ng) may be written in the form

1

n-1 ”
f(x) = 1;0 dix" + (;TIL)!- z{ (x - t)+" L yar

the existence of a numerical quadrature formula of the form

1
®e) - 3 atir) s a5y [ ko™ a
i=1 e

(see (6. 3)) which is valid for all f e W‘:), where 1<k <n-1, ¢£<[0,1],

0 < yl Cson K yp <1, is equivalent to the existence of numbers {ai}f, such that
{
fay = 0, £20,1,...,k~1
i=1 i'i
(6.5)
\ - SRR | s e %
i aiy‘-“_k)lg e B N SHOCRSER T |
i=1
and
X | a=1lt . on-1-k i _ g0l
(6:6)  K(t) = Ky(t) [(n cgparn ol Rl ay, - 0]

i=1

-3]-




Let P(x) be the perfect spline considered in Proposition 6.1.

Proposition 6.2. For each £ ¢« [0,1], there exists a numerical differentia-

tion formula of the form

(k),, ik W A
(6.7) £7(g) = 12'1 a,(8)(x) + =1, { K ()€ " (1)dt
such that Kg(ni) =0,1i=1,...,r, where {xi}?:; and {ni};:l are

as in Proposition 6.1.

Proof. The proof of Proposition 6.2 is equivalent to solving the linear

system
fren g 20 o N [(9) 3" e ]
xl e xn+r 0
k-1 k-1
xl B o xnﬂ_ " 0
k k
xl g xn+r k!
k+1 k+l , (k1)1
(6.8 X i ‘ 5 e
xn-l xn-l (n-1)! gn-l—k
1 i n+r : (n-1-k)!
n-l n-l -1)! n-1-k
(% =my)y o WP (n-1-k)1 (& = )y
n-1 n-1 (n-1)! ,, _ _\n-l-k
(K=ndy = e (xn+r-“r)+ Lan+r(§) (n-1-k)! (€-n),
- - - 3 -
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This can be achieved since the non-singularity of the above matrix is

equivalent to X, < n <x i=1,...,r. For P(x) as above,

i+n’
X, < ", < X in-l < X +n’ i=1,...,r, and the result follows. - E. T
For certain choices of §, we can make l(g vanish at Nes)’ too. We have
§ ]
1 1 0
Xl Xn+r 0
k k
!
xl xn+r o
(6.9) Kg(n):det i
xn-l xn-l (n-1)! gn-l-k
1 T n+r (n-1-k)!
n-1 n-1 _(n-1)! n-1-k
s B PSR e AR e Tl Sl
n-1 n-1 (n-1)! n-1-k
(xl 7‘r)+ Ly (xn+r nr)+ (n-1-k)! ( T'r)+
n-1 n-1 (n-1)! n-1-k
genl, oo (X o)) (n-1-k)! (€ -n),

where D is the reciprocal of the determinant of the matrix given in (6.8).

Therefore, Kg(nrﬂ) = D det Lk(g) and, for 1 <k <n -2, there exisis
(k) \n+r-k (k), _ & 3 LR |
(-‘,i }1=l such that det L (&, )=0,i=1...,n+r-k. Set £ =¢
* *
for some {=1,...,n+r-k, andlet ai(ﬁ ) = a, i=1...,n+r,
K ,(t) =: K(t). Thus, K(n)=0,i=1...,r+lL
€ $




*
Proposition 6.3. For {a1 }, K(t) as above,

* i
1) ai(-l) y>0,i=1,...,n+r, where y=+1 or -1 fixed, and
2) K(t)(—l)lézo for r]‘_j'(t( N i=1,...,r +2, where

ng =% n,, =1 and &=+ or -1, fixed.

Proof. Due to the possibility of degeneracies arising,
various cases need be considered. Let us first note

*
that from (6.9) and since x, < ¢ < x the support of K(t) is

1 n+r’

necessarily contained in (xl,x )y Ry K(i)(xl) % K(i)(xnﬂ) = 0,

n+r

+r+) = 0.

i=0,1,...,n-2, while K(n-”(xl-) = K(n-l)(xn

Casel. K(t)# 0 on any subinterval of (x,x_, ).

3
Subcase 1.1. § #xj, ) B PR R T o [

By the Budan-Fourier Theorem (Theorem 5. 2),

~ - 0T . B, * = i) ® i mel d, ) % el
ZK(xl'xn+r)ss (1;2a1' i§3aiv""an+r)-(n-l)+s ({K (g +)})1=0-S ({K (g -)}120)’
g 5 - -
because 8 ((KV(x )"0 =0, and s'kDx NI = n -1
Since £ #X, j=2,...,n4r X <b <X and KP(e*n = k™)
j’ Ao K £} l n+r’ ’
i=01...,n-L f#+n-~-1~Kk,
s (xYe" ™ h) - sT g™l < 2
for 1<k<n-2. Thus,
o il S . S
M ZK(xl’ xn+r+1) =8 (1;231 4 1‘:-:3&1 &L anﬂ') e
<Sn+r-2-n+3=r+l.
T S—




zm‘i\ e

L :

Therefore equality holds throughout implying that K(t) changes

sign at "y i=1...,r+1 and vanishes nowhere else in (xl’xn+r)’
n+\r 4 '

and S ( L a .,a__ ) =n+r-2. This latter fact, together with
{=2 B Endr

n+r

\ * * %
1i ai:O, implies aiai+l<0,1=l,...,n+r-1.
1=

*

Subcase 1.2. § =xj, forsome. f =2 i e n+tr~1s

*
Note that if k =1, then § # x, forany j = 2,...,n+r+l from the

j

%
construction of s(x) in Proposition 6.1. If 1<k<n-2 and ¢ =x_, then once

j?
again applying Theorem 5.2, it follows that K(t) has no additional

r+l

i=1 and

zeros other than its sign changes at {ni}

_ndr o, n#r o,
S(Lai,..., Zai)=j-—2
i=2 i=j

n+r

A

-]+l

n+r)-n+r-j-l

while s'({x“)(xj+) }?:o) - S+({Ku)(x).-)}?=-:)) = 3. The latter equality

n+r n+r PR
implies that ( L a )( L 3 ) < 0. It follows that a, a L S S
05 1 l+1 i i+l

Case 2. K(t) = 0 on some subinterval of (xl’xnﬂ')

a) Assume there exist i 1<i <i,<n+r, suchthat K(t) =0

plp 124 <1,

on any subinterval of (x1 » X ), and K(t)=0 for te (xi -€,X, )
! 1 1

and t e (x1 Xt e) for some € >0, ¢ sufficiently small.

- S
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*
Subcase 2.1. £ {[xi,x‘ }a

| gy
! < O T 1l = Py Yt
By Theorem 5.2, ZK(xil,xiZ) _(12 il 1) = (n-1) 12 11 0.
M 4 I
oreover X, < n and N e < X, by (5.2)
P 1 1 2 2
Thus, ZK(xil,xiZ) > 12 Nk + 2, a contradiction.
* *

Subcase 2.2. &€ =% Of & = X.

s ey i

1 2

We follow the previous analysis to obtain 2Z,(x, ,x, )<i, -i -n+1l.
K 11 i, 2 1

But as above, ZK(x, ,X, )>i, -1 -n + 2. A contradiction.

1 12 2 1

* *
b) Assume K(t) vanishes identically on (xi,g | o #xj,
*
j=1,...,n+r, while K(t) 20 on any subinterval of (§ ' X ¥
2

Adapting the previous analysis, one is again led to a

contradiction.

Thus the support of K(t) is necessarily a connected interval

s
(x, ,x, ), and & € (x, ,x. ). We now reapply the analysis of Case I,
il 12 il 12

where we make use of the result (5.2), namely, X, < n and N —n+l <x .

1 1 2 2
sk
Note that for i2<n+r, aj =0, j= 12+l,...,n+r, while if il>l,
n+r
K 1\
then a =0, j=1,...,4 -1, and 7 a = 0.
) {54
1
* %
It follows that aja)ﬂ<0, j= 11,...,12-1, and K(t) changes

éie 4 1
sign in (x1 ' % ) at " ' N onsl and vanishes nowhere else in

ok 1
(xi ' X ), implying as well that
W -

(6.10) noysn ol s s
i1 1 tl iz n+2 12

This proves Proposition 6. 3.
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Theorem 6.1. Let P(x) be a perfect spline with r +1 knots, n +r

%k k
points of equioscillation, and opposite orientation. Let £ = g(i )

for

some i=l,...,n+r-k, and 1<k<n-2, asin Proposition 6.3.

Then forany £« W™, llel_ <Pl and I6™ ) < IF™I_, we

bave 1E%e%l < lp(’" "

Proof.
' n+r 1
(k) . * _ * ety R (n)
£7(6) = ), a,f(x) + o [k tfY(t)at
i=1 0 ¢
where {a:};ﬁr and K _(t) satisfy the conditions of Proposition 6.3. Thus,
3
|
» s Sl W L)
UM < Bl % farl s S 1A, [ 1K 0l
%=1 S -
n+r +r
Now. L aiP(xi) = e"P"wr}‘ Iail, where & = +1 or -1, fixed,
i=1 i=1
: (n) (n) ;
and [ K (WP™(t)dt = x Pl _ [ Ik (t)|dt, where \ = # or -1, fixed.
[ | SO

To prove the theorem, it is necessary that we show that & = \.

o For tax =6 6>0,

Assume that supp K *(t) = (‘\\(i " )

i

3 % 8 2
* n-1
small, ¥ _(t) = -a; (xl - t)+ , and therefore
¢ e
*
(6.11) sgn K _(t) = -sgn a for t ¢ (xi -6, X ) 15
3 2 2 2
i+n+ iz+n+r
Assume P(xl)(-l) o 2 0, £ v };u...,n 42, Thus, sgn P(xi ) = (-1)
2
+
Since P(x) has opposite orientation, l’(n)(t)(--l)i >0 for n <t'< LY
i=0,1,...,r+1, where ny=0, 7, = 1. From (6.10),
(n) iz-n+r+l
- - > 0.
M oonel SE S g Hence, for t ¢ (xi 6,x1 ), PUU(t)(-1) 0

2 2 2 2 2
It therefore follows from (6.11) that e = \. The theorem is proven.

R T
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P(¢) contains perfect splines of the above form as well as Zolotarev
perfect splines. For o ¢ ("r’ Ur+l)’ the Zolotarev perfect spline has r +1
knots and n +r +1 points of equioscillation. Any other perfect spline P(x)
satisfying these properties is such that P(x) = *Z(x;0) or P(x) = *2(1 - x;0)
(see Taeorem 2.4). Let us assume the normalization Z(ljo) =1 and

(0)(1.0) = - - . g
Z"'(l;0) = ¢, which uniquely determines 2Z(x;o). Let 0_<_xl< <xn+r<xn+r+l =1

+
denote the points of equioscillation of Z(x;c) and let {qi}g_ll,

0 < " < .-+ <n ., <1 denote its knots. Then, as in (5.2), X, < n < x

r+l i+n-1’

i=1...,r+1. If we discard the point x 1, then we see that

n+r+l

we are in the situation where the previous analysis is applicable.

If o=¢ then 2(x;o0_,) = P .(x). Pr+l(x) has n+r+2

r+l’ r+l r+l

points of equioscillation, one at zero and one at one, and r +1 knots.
In order to apply the previous analysis, we delete the points of equi-

oscillation at 0 and 1. Note that the point (or points if ¢ = o_ )

r+l
of equioscillation which are deleted are chosen in order that the perfect

spline have opposite orientation with respect to the remaining points of
equioscillation.
.
Thus it follows that
Theorem 6.2. Foreach >0 and k, 1<k<n-2 and for each P ¢ P(0),
there exists at least one point ¢ € (0,1) such that maxlf(k)(é)l, over

t« w'™0), is attained by P(x).
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The maximization problem (6.2) where £ = 0 or 1, i.e., an
endpoint, has been considered by Karlin [11]. If o = o then Pr(x)
maximizes ff(k)(l)i (and ff(k)(ﬂ)“ foratl k=1....8a~1.

o <g < ¥ then Z(x;o) with the above normalization maximizes

lf(k)(l)l for k =1,...,n - 1. At the endpoint zero Z(l - x;0) is,

of course, a maximizing function. There are various methods of proof
of this result. We refer the reader to Karlin [1l] for a proof which is

also given via a numerical differentiation formula.

In the above analysis, we did not consider the case k = n - 1.
This was, in the main, due to various technical difficulties brought about
by the lack of continuity of s(n-l)(x) and Kg(t) for k = n-1. Below,
we reconsider the relevant portions ot the preceding analysis in order
to prove

)

(o), we have

Theorem 6.3. Let P e P(o). Then, for any f e Wi)n

(n-1 n-1)

1P D < |8

(n)| where n is any knot of P(x).

We shall only consider the case where P(x) is a perfect spline
with r+1 knots, n +r points of equioscillation, and opposite
orientation. As indicated above, the analysis remains valid for the
Zolotarev perfect splines with the previously considered modifications.

From Proposition 6.1, s(n-l)(x) is a non-zero constant on each

o 8 3 r+l
(”1’ ni+1)’ i=0,1,...,r+1, where N = 0 PR 1 and {qi}1=1

(n-l)(n -)s(n-l)(ni+) L4 RS BN e g S !

are the knots of P(x), and s (

Let L(£) denotethe (n+r+1)X(n+r +1) matrix
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1 1 0
kel X
xl n+r .
n-2 n-2
g 0
xl xn+r
n-1 n~-|
e - !
X 4 . (n-1)
n-1 n-1 0
- . - 1 -
(%, ”1)+ (X nl)+ (n~-1)1(¢ “1)+
n-1 n-1 0
- - -~ 1 -
(xl T]r+1)+ ( n+r nr+l)+ (n - 1) (€ nr+l)+J

+
where {xi}?:; are the points of equioscillation of P(x). Since

X the

1 = 1,.

<nm <x o & & (n +r) X(n +r) principal submatrix

i+n-1’
of L(¢) obtained by deleting the last row and column is non-singular.
Moreover,

(b

Thus, if

since

s(n-l)

0

el PR (8, ... 080" UE))

(€) # 0,

then det L(§) # 0.

e

It then follows,

e 2

s (n s

that detL(nj-)-detL(nj+)<0,j Lov,rdl, Fix | L1+,

and let ;i=q BB U B T A i=j,...,r. Construct the

i’ i~ M

numerical differentiation formula

n+r

a P

=D

j

Z aif(xi) +

i=

1

(n - 1)!

1 :
f k(L™ (t)at - 2
0 ~ , :

where {x }n+r

}r

are

such that K(;i) =@, £ Wk

Y

i'i=1

and {¢

i'i=1

as stipulated above. This construction is equivalent to solving the linear system




X v 0. X 0
1 n+r
xn“2 4 2y xn-2 - 0
1 n+r
(6.12) n-1 n-1 = ST
X e : (n-1)!
P L (n-1)t(n-2,)°
T : n+r "1+ S e T

n-1 n-1 0
- e - -1 -
(xl ;r)+ : (xn+r gx')+ ] ®n+r (n-1) (nj Lr)ﬁ
: / .
Since X, < n < X en-1’ it follows that X, < gi Xin for

i=1,...,r and these are explicitly the conditions necessary to insure

the non-singularity of the above matrix. Now.

fer 1 Wik 0 7
xl o xn+r 0
il < :
s E,
K(t) = det xn‘l xn-l s
1 R S 8
n-1 n-1 _4.40
(x,=%,), (= S)y (=D 1(n-L)
n-1 n-l . 0
(=t )5 eee (3, ~)LT (D=L,
n-1 n-l 0
’ l.(xl t), (x, Moy = (n-l)!(n,-t) ‘|
|
|
-4]-




where E is the reciprocal of the determinant of the matrix given in (6. 12).

n+r

Thus K(t) = (n - l)!(nj - t)? - ai(xi - t)':-l satisfies K(t_,i) = 0,

~

i=1
f=b.. L0 K(q,+)K(n)-)<0'

i :
We wish to prove that °l(_” Y20, i<l,...,n+r, where y-= +1

or -1, fixed, and K(t)(-l)ib >0 for <t<“i' Lol on;f &2,

Y-y

where r|0=0, Moz * l, and 6 = +1 or -1, fixed. As in the proof

2

of Proposition 6. 3, the analysis is divided into various cases. We shall
herein consider only the analogue of Case 1, Subcase 1.1 of Proposition 6. 3.
The remaining cases follow in a similar manner. Hence, let us assume

that K{t) # 0 on any subinterval of (xl,xn”) and n; R, 122 ... ntr~1.

i’
By Theorem 5.2,
e N ntr L y
Zl((xl,nj)gs(i}:_,Z a, ey i%,‘ ai) :

(n-l)(“‘_))

+ 87(KGx), - - KPP 4) - §'(K(n-), - -, K ]

and

= o, . * o (n-1)
ZK("l’v xn+r)$s (1§‘5l y ey °n+r) +8 (K(‘Tj"')’ ee ey K (nj"'))

: s"(x(xn i k(0D 2l 4

for some f, 2<f<n+r. Thus

B » o S *
rsZK(x,n’) + ZK(n’,xn")gS (12-"2 °i""’°n+r) -(n-1

+ 8 (K(n#), .. -.K(“'l)(n,ﬂ) . S+(K(r|j-), ek K("'”(n,-)),
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implying

Gt/ TR 8

1< S-(K(n),+), ey K(n_l)(qj\‘)) - S+(K(r\j-), ksl ;

(r]j+), § l,...,n-'l,

(n#) - 8" (K(n=), - -,K(n-l)(nj°)) <1.

Since K(i)(nj-) - K(i)

5™(K(n,4), - - glo~b)

Equality in the above equations imply K('q’, +)K(n),-) < 0, K(t) changes

sign at t"i’ i =1,...,r and nowhere else in (xl, qj) U (qj’xnﬂ)’ and
® X
aa,_ <0 i=l...,ntr-1L

The remaining analysis is totally analogous to that given for the

case 1<k<n-2.
Remark 6.1. Note that the results of this section are independent of
Sections 3 and 4, and Theorem 5.1.
Remark 6.2. The results of this paper extend, mutatis mutandis, to the
class of functions

n-1 1

f(x) = ), au(x) + [ K(x, t)(LH(t)dt ,

i=0 0
where L is an ns'l'l order differential operator of Pc’alya type W (totally
disconjugate) on [0,1], {u’l(x))T;z is a basis of solutions of Lf = 0,
and K(x,t) is the fundamental solution for Lf = 0 obtained by zero

initial data at zero, see Karlin [8] - [11]. The restriction ||f(n) "oo5 o

is here replaced by [lILf ”oo_g .
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